
Dreaming up Metamorphic Relations:
Experiences from Three Fuzzer Tools

Andrei Lascu
Imperial College London

London, United Kingdom, SW7 2AZ
Email: andrei.lascu10@imperial.ac.uk

Matt Windsor
Imperial College London

London, United Kingdom, SW7 2AZ
Email: m.windsor@imperial.ac.uk

Alastair F. Donaldson
Imperial College London

London, United Kingdom, SW7 2AZ
Email: alastair.donaldson@imperial.ac.uk

Tobias Grosser
University of Edinburgh

Edinburgh, United Kingdom, EH1 2LX
Email: tobias.grosser@ed.ac.uk

John Wickerson
Imperial College London

London, United Kingdom, SW7 2AZ
Email: j.wickerson@imperial.ac.uk

Abstract—Metamorphic testing requires the availability of a
suitable set of metamorphic relations (MRs) for the application
domain of interest. A software testing practitioner interested
in using metamorphic testing is thus blocked unless they can
devise a suitable set of MRs. In this paper we offer some
practical advice on sources of inspiration for MRs, based on our
experience building three fuzzing tools based on metamorphic
testing: MF++, which supports automated testing of C++11
libraries, C4, which tests concurrency support in C11 compilers,
and spirv-fuzz, which aims to find bugs in compilers for the SPIR-
V programming language (mainly used in computer graphics).
The MRs we have devised have taken inspiration from three
main sources: (1) careful study of specification documents related
to the libraries and programming languages that these tools
target, (2) consultation of prior work and discussion with domain
experts, and (3) manual inspection of the results of automated
code coverage analysis on the systems under test. We describe
these sources of inspiration in detail, giving a range of concrete
examples for each. We hope that this experience report will help
to inform developers of future metamorphic testing tools as to the
steps they can take to discover MRs in their domains of interest.

Index Terms—metamorphic relations, fuzzing, metamorphic
testing, compiler testing, library testing, C11, SPIR-V

I. INTRODUCTION

Metamorphic testing [1] involves using metamorphic rela-
tions (MRs) to generate new test cases from existing ones.
Informally, an MR describes how certain changes to the input
of a system under test (SUT) are expected to change the SUT’s
output. As a simple example, if a word count program tells us
that a text file T contains 100 words, then we should expect
the program to tell us that a text file T ′ contains at least 100
words whenever T ′ has T as a substring.

More formally, a metamorphic relation (MR) is charac-
terised by a pair (R,S) of binary relations with the property
that for any test cases x and y, if (x, y) ∈ R holds then
(f(x), f(y)) ∈ S should also hold, where f represents the
SUT. In our word count example, we would instantiate R to
{(T, T ′) | T is a substring of T ′}, and S to “≤”. A fault
in the SUT is revealed if a metamorphic relation is violated;

e.g. a fault in the word count program would be revealed if
adding text to a file caused the reported number of words
in the file to decrease. Metamorphic testing has gained a
lot of attention in recent years (see [2] for a recent survey)
because it circumvents the oracle problem [3]: for a given
test input x we can apply an MR to obtain a related test
input x′ (such that (x, x′ ∈ R)), and then check whether the
results f(x) and f(x′) are appropriately related (i.e., whether
(f(x), f(x′)) ∈ S), without needing to know the expected
value of either f(x) or f(x′).

The main barrier to using metamorphic testing in practice
is the need to devise suitable MRs. Writing meaningful and
effective MRs requires intimate knowledge of the problem
domain of the SUT, including in-built assumptions and pre-
conditions on which the SUT depends.

Over the last few years we have developed three tools that
employ metamorphic testing:

• MF++ [4], for automated testing of C++11 libraries,
• C4 [5], which tests compilation of C11 concurrency, and
• spirv-fuzz [6], which tests compilers for the SPIR-V

language [7] (mainly used in computer graphics).

Our tools employ metamorphic fuzzing: they take an input
to the SUT along with a set of MRs, and produce a stream of
follow-up test cases by applying randomised combinations of
said MRs to the input.

In the design of each of these tools we have had to formulate
suitable metamorphic relations. We have found the following
three strategies to be effective:

• studying specifications: looking carefully at API and
programming language documentation to pinpoint ex-
pected properties of or relationships between API func-
tions and language features,

• consulting prior work and domain experts: studying
the MRs used in prior related work, and talking to experts
in the application area of the SUT, then distilling the
gained knowledge into new MRs, and

Standards

Docs/examples

SUT

Tests

Experts

Bugs

Tools

Coverage

Textual analysis

Experiments

read by

write
read by

writecode
code

fin
d

write

find

achieve

bound

exhibit
are fixed in

inform

in
fo

rm

informtest
find

inform
find

are used in

are used in

yield

Fig. 1. Some of the inspiration sources and strategies we consider in this paper, and their relationships.

• deriving metrics from the SUT: collecting coverage
information for the source code of the SUT based on
running a metamorphic testing tool with a given set of
MRs, or performing keyword-based searches of the SUT
source code to identify key source files that appear rele-
vant to the behaviours the fuzzing tool aims to exercise,
then manually analysing the results and using blind spots
as inspiration for new MRs that might alleviate them.

These strategies cover various levels of abstraction from
the SUT, ranging from ‘black-box’ information about expected
behaviour to ‘white-box’ inspection of actual behaviour; some
sources operate on levels in-between. As we show in fig. 1,
the strategies capture a network of deeply related sources of
knowledge about the SUT. For example, domain experts both
read and write standards and documentation, and often create
the existing tools and bug reports that we study for MRs.

Our contribution: Although the MRs we have derived for
MF++, C4 and spirv-fuzz are domain-specific, we believe
the strategies we used to derive them could be fruitfully
employed by other researchers and practitioners interested in
metamorphic testing. Our contribution is an example-driven
experience report describing these strategies in detail, with
illustrative examples. We hope this will serve as a useful
cookbook of ideas for manually writing MRs.

Paper structure: We provide background on the fuzzing
tools we have developed (section II) and then describe, with
examples, our three main sources of inspiration for MRs:
studying specifications (section III), consulting prior work and
domain experts (section IV), and metrics (section V). We
also discuss related work (section VI) and conclude with a
discussion of future work (section VII).

II. BACKGROUND

We provide a brief overview of MF++ (section II-A), C4
(section II-B) and spirv-fuzz (section II-C).

A. MF++

MF++ [4] provides a platform for C++ library developers
to integrate metamorphic testing into their own workflow. MRs
are used in MF++ indirectly, meaning that end-users do not di-
rectly provide the pair (R,S) as described in section I. Rather,
the user decides on a set of abstract operations that can be
performed on the data types of their library. For each abstract
operation they also provide a family of distinct but equivalent
concrete implementations, each of which is a sequence of
functions of the library under test. The tool randomly chooses
a sequence σ of the abstract operations. It then expands σ
into a set of n concrete sequences, {σ1, . . . , σn}, where each
σi is derived from σ by repeatedly replacing an abstract
operation with a randomly-selected concrete implementation.
Every sequence σi is then executed on the library under test
with respect to the same input. The results should all agree:
mismatches either reveal faults in the library implementation
(i.e., testing is successful), or that the concrete implementa-
tions the user has provided for an abstract operation are not
actually equivalent (in which case they should be fixed and
testing should be repeated).

For example, suppose we are interested in testing a library
for manipulating a bitvector data type, bit_vec. A straight-
forward abstract operation that can be performed on a bitvector
is the identity operation, which returns a bitvector unmod-
ified. Suppose our library offers functions rotate_left,
rotate_right and size, which rotate the bits of a bitvec-
tor and yield the number of bits in a bitvector. Two possible
(non-trivial) abstract implementations of identity are:

bit_vec identity_rotate_fully(bit_vec bv) {
return bv.rotate_left(bv.size());

}

bit_vec identity_rotate_back_forth(bit_vec bv) {
size_t r = rand() % bv.size();
return bv.rotate_left(r).rotate_right(r);

}

In terms of the formal definition of an MR, an input to the
library under test is a pair (σ, x) where σ is a sequence of
library calls and x is a data value that provides the necessary
inputs to the calls in σ. The library implementation executes
an input (σ, x) by invoking each call in σ in turn, drawing
data from x. A family F of equivalent implementations of an
abstract operation can be viewed as an MR (R,S) where:

R = {((σ1, x), (σ2, x)) | σ1 ∈ F ∧ σ2 ∈ F}
S = equality

The MRs that MF++ consumes are described in terms of
calls to functions of the library’s API. Understanding the API
of a given library is, therefore, crucial to writing effective
MRs. Because the MRs (i.e., families of equivalent imple-
mentations) used by MF++ vary between libraries, they are
provided by the user rather than being hard-coded in the tool.
To evaluate MF++ we have prepared sets of MRs targeting
various libraries for solving mathematical constraints: integer
set library (isl) [8], Z3 [9], Yices2 [10] and Boolector [11].
We draw on examples from these sets of MRs in this paper.

B. C4

C4 [5] mutates concurrent C test-cases. It aims to provide
oracles for compiler testing (complex tests with known ex-
pected behaviour) by fuzzing them from smaller, exhaustively-
simulated tests. For example, consider the following test:

assume(*x == 0);

atomic_store(x, 1);
r0 = atomic_load(x);
r1 = atomic_load(x);

assert(r0 <= r1);

C4 might fuzz this test into the following:

assume(*x == 0 && *t == 27);

if (*t <= 27)
atomic_store(x, 1);

r0 = atomic_load(x);
r1 = atomic_load(x);
if (*t > 27) r0 = 53;

assert(r0 <= r1);

This is valid because the tests fix specific initial values for
all variables, including the new variable at *t. While the new
conditionals theoretically alter the test’s behaviour, in practice
*t is always 27, the conditional on the left always executes,
and the conditional on the right never executes. As such, the
two programs have equivalent behaviour over *x, r0, and r1.

For this method to work, a generated test must observation-
ally refine any simulated outcomes of the test on which it is
based, with respect to the set of variables that appear in the
original test. As the tests are self-contained with fixed inputs,
this set-up resembles equivalence modulo inputs testing [12].

C4 mutates tests by applying actions, randomly selected
and instantiated from hard-coded templates. Actions transform
one or more statements in the test to introduce control flow,
variables, atomic actions, and so on. Each action a obeys

the refinement condition above, inducing an MR (R,S) over
compilers where the inputs (t, t′) are the C tests and the
outputs (c, c′) are the corresponding compiled executables:

R = { (t, t′) | t′ = a(t)}
S = {(c, c′) | ∀o ∈ obs(c′).∃o′ ∈ obs(c). o = o′|var(c)}

Here, obs(c) is the set of final states reachable by executing
c, and o|var(c) restricts o to those variables mentioned in c.

C4 does not test the system-under-test (the compiler) di-
rectly using the MRs. Instead, each test-case used as C4 input
contains an oracle in the form of a postcondition (for instance,
a disjunction over all final states observed by exhaustively
simulating the test-case with HERD [13]); compiler bugs may
exist if the postcondition holds when simulating at the C level
but not when running the compiled test-case. The MRs are
soundness arguments, witnessing actions that C4 can perform
on the test-case while preserving the validity of its oracle. This
said, the derivation of C4 actions (and therefore MRs) usually
proceeds as if C4 were a traditional metamorphic testing tool.

C. spirv-fuzz

Standard Portable Intermediate Language-V (SPIR-V) [7] is
a low-level intermediate language somewhat similar to LLVM
intermediate representation [14], but designed specifically
for programming heterogeneous many-core systems, with a
particular focus on graphics processing units (GPUs). It is
the language used for writing programmable shaders in the
Vulkan programming model [15]. Every device that ships an
implementation of Vulkan (which means virtually all desktops,
laptops, smartphones and tablets, except those from Apple)
comes with a graphics driver that includes a compiler from
SPIR-V to the instruction set of the device’s GPU.

The spirv-fuzz tool [6] follows in the footsteps of the
GraphicsFuzz tool [16] by providing a means for testing
SPIR-V compilers using a metamorphic approach. The tool
is equipped with a large number of source-to-source transfor-
mations, each of which takes a SPIR-V program and produces
an equivalent program that should yield the same outputs when
applied to the same inputs. Given an original program, spirv-
fuzz produces a variant program by applying many of these
transformations in a randomised fashion, and then compares
the results obtained by compiling and running both the original
and variant programs. As with C4, this testing approach is
inspired by the equivalence modulo inputs technique [12],
and a spirv-fuzz transformation is somewhat analogous to a
C4 action. However, while a C4 action should observationally
refine a program, a spirv-fuzz transformation should lead to an
observationally-equivalent program.

More formally, if we view the SUT—an implementation of
SPIR-V—as taking a SPIR-V program P and an input x for
P , and yielding the result of compiling P and running it on
x, each transformation α employed by spirv-fuzz induces a
metamorphic relation (R,S) where:

R = {((P, x), (P ′, x)) | P ′ = α(P)}
S = equality

III. INSPIRATION FROM SPECIFICATIONS

Any specification to which the SUT is supposed to adhere
is an obvious inspiration source. We define ‘specification’
loosely, including formal specifications as well as documen-
tation, APIs, header files, examples, test suites, and the SUT
source code itself. Here, we give examples of MRs derived
from studying specifications associated with our tool domains.

Example 1: Adjusting non-functional hints. It is fairly
common for an SUT to have certain parameters that only
relate to non-functional properties of the system. The fact that
adjusting such parameters should have no effect on the output
of the SUT is a straightforward MR. Some SPIR-V instructions
accept optional arguments that provide optimisation hints to
the SPIR-V compiler, but that should have no functional
impact on how the SPIR-V code behaves. Transformations
that add or remove such hints are thus good candidates for
MRs, to test that the hints indeed have no semantic impact.

For example, the OpLoad and OpStore memory instruc-
tions that load from and store to memory accept a set of “mem-
ory operand” flags. One such flag is called NonTemporal,
about which the specification states [7, p. 95]: “Hints that the
accessed address is not likely to be accessed again in the near
future”. As another example, a function declaration can be
marked Inline to indicate [7, p. 92]: “Strong request, to
the extent possible, to inline the function”. The spirv-fuzz tool
features a variety of simple transformations that toggle these
hints and have been useful in triggering several bugs. �

Example 2: Removing assertion hints. SPIR-V also includes
some hints that allow the programmer to communicate as-
sertions to the compiler that it can use when optimising. A
function can be marked Pure, indicating [7, p. 92]: “Compiler
can assume this function has no side effect, but might read
global memory or read through dereferenced function param-
eters”, while a loop can be marked with MinIterations
N , which is an “Unchecked assertion that the loop executes at
least a given number of iterations” [7, p. 90]. The spirv-fuzz
tool has transformations that remove such assertion hints if
they are already present in a module, but should not add them
unless it is able to prove that they actually hold. User-provided
assertions are present in other programming languages and
analogous concepts may apply in the context of other SUTs.
Removal of such hints provides an easy MR, so long as their
removal should not affect the functionality of the SUT. �

Example 3: Rewriting a simple operation as a special
case of a more complex one. We have found several
examples where a careful reading of SUT specification doc-
uments reveals that a simple operation can be viewed as
a special case of a more complex or general operation. A
natural MR is thus to rewrite instances of the simple operation
accordingly, which may reveal faults if it turns out that one
of the operations has not been implemented correctly. Such
rewrites resemble the MRs derived from redundancies inherent
in SUTs by Carzaniga et al. [17]. We describe an instance of
this inspiration source in action for each of our three tools.

In accordance with specification documents related to C11
concurrency, C4 can rewrite atomic load actions as read-
modify-write (RMW) actions where the writing step is known,
through algebra, to be idempotent. For example, x + 0 = x,
so atomic_fetch_add(x, y) (atomically: read the value of
x then add y to x) refines atomic_load(x) if y evaluates
to 0. C4 can generate reasonably complex expressions for y,
which can themselves include idempotent RMWs. Deriving
MRs in C4 for such operations involved looking at a variety of
specifications. First, the operation names suggest an analogy
with operations with known right units (such as + and 0).
Second, derived language documentation (such as cpprefer-
ence [18]) gives us sufficient detail about the semantics of
each operation to confirm that using such units is sound. Third,
scrutiny of the LLVM source code revealed a lowering pass
for idempotent fetches that not only handles obvious cases
like adding 0, but also cases like bitwise-ANDing with −1
that depend on two’s-complement arithmetic. Given this, we
expanded our support for generating such fetch operations to
include atomic_fetch_and(x, y) where y evaluates to −1.

An example of this in MF++ is rewriting the mod operation
in Z3 [9], which led to the discovery of a bug where Z3
incorrectly determined a formula to be satisfiable.1 By using
the fact that division in Z3’s integer theory is implemented as
integer division (as in the SMTLIB2 declaration of Integer
Theory implementation [19]), we can rewrite a mod b as
a− (b ∗ (a/b)) (with the appropriate non-zero checks).

Integer addition in SPIR-V follows two’s complement se-
mantics. A special instruction, OpIAddCarry, is provided to
support the case where one wishes to know whether a given
addition resulted in overflow [7, p. 186]. When applied to a
pair of 32-bit integers a and b, the instruction returns a struct
with two 32-bit integer fields, one containing the 32 low-order
bits of the sum a+b, the other containing the carry bit: 1 if the
addition overflowed and 0 otherwise. Transforming a regular
addition instruction into an OpIAddCarry operation that
discards the carry bit thus provides a straightforward MR. �

Example 4: Consulting derived documentation. By derived
documentation we mean any material related to the SUT that
indirectly relates to its official specification (if an official
specification even exists), such as API references, additional
wiki pages, and tutorials. These provide an approachable
access point to a new tool or a new domain of interest. For
MF++ this is particularly important, as MRs are user-provided
examples exercising the API of the library under test. As such,
for a person initially unfamiliar with a library they might wish
to test, having access to the API in a digestible format, as
well as potentially annotated examples, is invaluable. Even for
libraries with some degree of familiarity, referring to an API
reference helps pinpoint potential MR candidate functions.

As discussed in Example 3, we found cppreference [18] to
be a useful source of inspiration for C4 MRs; in fact we found
this derived document more useful than the C11 standard. �

1https://github.com/Z3Prover/z3/issues/2238

https://github.com/Z3Prover/z3/issues/2238

Discussion: We discussed the possibility of using the SUT
source code as a specification in its own right. For ma-
ture SUTs with large codebases, however, it is practically
unfeasible to refer to code alone, and SUT source is not
always available. In section V we discuss the use of coverage
information and basic textual analysis to help identify the parts
of a large SUT that might be relevant as inspiration sources for
new MRs. Additionally, when consulting the source code of
one SUT to generate MRs, we must keep in mind that certain
implementation choices might not generalise to the domain,
and thus not hold in other SUTs from the same domain.

While we did not consider them here, SUT test suites could
also be useful sources of inspiration — either in terms of
kinds of MRs to create, or which parts of the SUT to stress.
Test suites can also contain maintained and curated examples
exposing important functionality of the SUT, often including
tests introduced in response to bugs encountered by users.

IV. INSPIRATION FROM PRIOR WORK

When considering applying metamorphic testing to an SUT,
it is worth considering (a) whether metamorphic testing has
been applied previously to a similar domain, in which case
it might be possible to retarget the MRs used in prior work,
and (b) whether MRs can be mined from previous experience
gained from engineering and working with the SUT, which
might be captured in a bug tracker or just in the minds of
experts. We give examples of how MRs have been inspired
by studying existing metamorphic testing tools, looking at
existing SUT bug reports, and consulting domain experts.

Example 5: Using MRs from existing tools in new domains.
Metamorphic relations often need to capture knowledge about
the specific SUT domain. However, if metamorphic testing
tools exist in nearby domains, we can profit from the MRs
devised for those tools. While we are unlikely to find MRs
that apply directly to our domain, we may be able to adapt or
at least draw inspiration from these existing MRs.

An example from C4 is a family of actions, transplanted
from GraphicsFuzz [16], that insert ‘dead’ blocks. These are
blocks that are statically known to be unreachable, such as
the body of if (false) { ... }. Inside dead blocks, C4
can generate code that would usually be ill-formed or fail
refinement; this exposed a bug in the way pre-release versions
of GCC handled loop overflow.2 While the overall structure of
this action family is general, details such as how to generate
known-false expressions change from domain to domain.

MF++ is very amenable to adapting existing MRs to
other libraries in the same domain, or even loosely related
domains. As the MRs are written using the API of the libraries
under test, it is fairly common for libraries within the same
domain to have similar functions. For example, the Yices2 [10]
and Boolector [11] SMT solvers both support the theory of
bitvectors. Their APIs share share a large number of bitvector
operations, with identical or similar naming conventions. As
such, once MRs have been defined for one of these libraries,

2https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97501

int g1 = 1, g2 = 0;
void P0() {

for (int l = 0; l != 4; l++) {
if (g1) return;
for (g2 = 0; g2 >= 26; ++g2);

}
}
void P1() { g2 = 42; }

Fig. 2. Bug stimulus from Morisset et al. [20], which inspired C4 loop actions.

search and replace would take care of the majority of changes
require to target the other. �

Example 6: Deriving MRs from existing known bugs.
Reports of existing bugs can help us to find new MRs. Often,
we can extract minimal stimuli from said reports; these may
reflect an MR or a class of inputs that a particular MR may
be able to capture. In addition, we can validate our tools by
bringing such bugs into their search space, either by using an
affected SUT version or by manually injecting them.

An example of such efforts on C4 involves a bug originally
described by Morisset et al. [20]. This bug involves two loops
(fig. 2) that, at first, seem to execute a fixed number of times;
in fact, the first loop always terminates immediately, and the
second loop is unreachable. As such, the only code modifying
g2 is that which sets it to 42, and we should never observe
any other value for g2; the bug exhibits when the compiler
accidentally causes parts of the second loop to execute and
modify g2. This bug inspired two new C4 actions: one inserts
arbitrary multiple-execution for-loops such as those seen in
the bug; a second inserts break and continue statements,
possibly wrapped in known-true if blocks, at the end of loops,
producing pockets of dead code. �

Example 7: Devising MRs in collaboration with domain
experts. MF++ initially started out as a project to apply
metamorphic testing to integer set library (isl) [8], before we
decided to expand it to generic C++ libraries. A lot of work
alongside isl developers went into polishing MRs used for
testing, and to understand what parts of the libraries we should
be focusing on. Over a period of 3 months of intense testing
and collaboration, we were able to slowly polish existing MRs
to uncover new bugs and improve our testing efficacy.

SPIR-V features various instructions to sample from images
at specified coordinates. The specification includes language
such as [7, p. 147]: “Coordinate must be a scalar or vector
of floating-point type. ... It may be a vector larger than needed,
but all unused components appear after all used components.”
An NVIDIA engineer filed a suggestion on the spirv-fuzz issue
tracker,3 stating: “We had a bug report that ended up being
triggered by an image instruction having unused components
in the coordinate. ... Adding unused components seems ideally
suited for the fuzzer.” Based on this suggestion from a domain
expert, we were able to add a transformation to the tool that
would rewrite relevant image instructions to introduce unused

3https://github.com/KhronosGroup/SPIRV-Tools/issues/3375

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97501
https://github.com/KhronosGroup/SPIRV-Tools/issues/3375

components. This is also an instance of devising an MR based
on an existing known bug (as in Example 6), except that the
bug and suggested MR were communicated to us via a domain
expert. In this instance we were lucky that the domain expert
proactively suggested the new transformation. More generally
it is likely worth scheduling time to interview domain experts
in order to elicit ideas for MRs. �

Example 8: Refining MRs based on false alarms. When in-
troducing some MRs in MF++ targeting Z3 we experimented
with the POW operation for integer exponentiation. By adding
MRs including calls to the respective API function, but not
limiting the operands in any way, we observed cases where
changing an operand in a manner that we believed should
have no effect would change the solver’s result from SAT
to UNKNOWN. After reporting it as a potential issue to the
Z3 developers,4 we were made aware of a parameter which
controls the limit of the exponent, above which the solver
gives up. This allowed us to refine our MRs exercising the
POW operation. However, our experience indicates how false
alarms can stem from the metamorphic testing process, when
assumptions are made which are not consistent with the tested
features. This exposes parts of the SUT that could be better
documented.

Discussion: Building on prior work has clear advantages, as
illustrated by our examples, but may risk limiting the scope of
a new metamorphic testing technique. For example, trying to
devise MRs that allow particular known bugs to be reproduced
might lead to a tool that is over-fitted for those sorts of bugs,
such that when they are all fixed the tool has limited value.
Furthermore, when employing any sort of fuzzing in testing, it
is important to be aware that an SUT rapidly becomes immune
to a particular fuzzer if the SUT developers are diligent about
fixing fuzzer-found bugs [21]. As such, a metamorphic fuzzing
tool that is over-dependent on existing testing work might
inadvertently lead to the tool generating test cases to which
well-tested SUTs are already immune.

An issue with taking inspiration from tools in a related but
distinct problem domain is that we might overfit our tools to
the wrong domain. For instance, we derived several relations
in C4 from relations in GraphicsFuzz, such as dead-code
introduction, that we thought to be agnostic to the underlying
programming language; any bugs found using such relations
were usually sequential control-flow bugs, not concurrency-
related bugs. This suggests an unintentional bias towards the
types of bug expected in GraphicsFuzz’s domain despite a
conscious attempt to generalise the relations to C4’s domain.

V. INSPIRATION FROM METRICS

As well as the qualitative strategies discussed above, we
can use data-driven strategies to help inspire MRs. We give
some examples of how we have used text-based searching of
SUT source code, as well as automated collection of statement
coverage info, as a starting point for devising new MRs.

4https://github.com/Z3Prover/z3/issues/4815

bool b = true;
int exp = KNOWN_VALUE_OF(obj);
int x = RANDOM_EXPR;
b = compare_exchange_strong(&obj, &exp, x);
assert(b);

Fig. 3. C4 device for injecting known-true using compare-exchange.

bool b = true; int exp = 42;
b = compare_exchange_strong(obj, &exp, des);
/* rewrite */ return (exp == 42);
/* to */ return b;

Fig. 4. Optimisation valid for strong compare-exchanges, but not weak ones.

Example 9: Leveraging textual analysis and code coverage
analysis. C4 targets compilers, which usually have very large
codebases. Because C4 is focused on testing aspects of a
compiler related to concurrency, it is expected that testing with
C4 might leave large parts of the total compiler code base
uncovered. Yet if we could identify concurrency-related parts
of the code base that are not well covered we might be able
to devise new MRs that would remedy this (and potentially
find more bugs in the long-run).

To investigate this idea we used textual analysis to help
identify key files in the LLVM compiler that relate to con-
currency. Specifically, we searched both filenames and source
code in LLVM for keywords such as ‘atomic’, ‘cmpxchg’,
and ‘memory order’, building a list of files and code lines that
appear to be concurrency-related. We then compiled LLVM
with coverage enabled, and ran C4-based testing for a number
of hours. Having both data (via textual analysis) on which
components of the compiler appeared to be concurrency-
related, and data (via coverage analysis) on where C4 was
achieving poor coverage of these components, we were able
to gain insights on new MRs that could be added to the tool
to exercise the concurrency-related facilities of LLVM.

For example, C4 initially had an action inserting strong

compare-exchanges (with statically-guaranteed success) as
shown in fig. 3. Strong compare-exchanges succeed provided
that the expected value is the same as the object value,
updating the object with the desired value when this occurs;
the return value accurately reflects success. C also supports
weak compare-exchanges, which may spuriously fail; C4 did
not support these, and missed any code that handled them
(including conditions on rewrites that depend on strong

semantics). Figure 4 shows one such rewrite, corresponding
to an LLVM IR optimisation in InstCombineCompares
that was not previously covered (and which we found using
a combination of textual analysis and coverage as described
above). The presence of such rewrites in LLVM led us to make
C4 generate both weak and failing compare-exchanges. �

Example 10: Combining code coverage with expert advice.
When dealing with mature codebases for a less familiar SUT, it
can be hard to act on code coverage information. Specifically,
without expert knowledge it can be hard to know which

https://github.com/Z3Prover/z3/issues/4815

sections of uncovered code in the SUT to focus on, or how to
achieve additional coverage on partly covered source files. In
Example V we discussed basic textual analysis as a possible
solution to this problem. An alternative is to discuss coverage
results with domain experts. We faced the challenges of an
unfamiliar SUT when trying to expand testing of isl using
MF++. At the advice of the isl developers, we decided to
focus on the coalesce [22] operation: they advised that it was
an operation that they considered hard to implement correctly,
and they were concerned that it might be undertested. We
shared MF++-based coverage data for the coalesce source
file with the isl developers. They were quick to highlight what
kind of operations we should include in our MRs in order to
achieve the additional desired coverage. After implementing
their recommendations, we were able to achieve nearly 100%
statement coverage of the coalesce implementation, and found
a previously-unknown bug due to the enhanced testing.5 Like
Example 7, this demonstrates that it can be fruitful to work
with domain experts when seeking inspiration for MRs. �

Discussion: Although coverage analysis on relevant source
files can identify parts of an SUT that are under-tested by
a metamorphic testing tool, it may be far from obvious how
to translate this back to new MRs. With C4, the optimisa-
tions we found from coverage analysis manipulated compiler
intermediate representations (such as LLVM IR) or streams of
generated assembly instructions. As C4 operates at a level of
abstraction much closer to C source code, we had to make
educated guesses as to which C constructs would lower to
representations that would trigger the optimisations.

The use of SUT source code interacts well with the use
of coverage: the latter can be a useful guide to the former.
For instance, C4 targets large compiler codebases, where it is
hard to see which parts of the code will yield useful meta-
morphic relations; coverage experiments, alongside sampling-
based approaches (such as visiting files with names containing
‘atomic’) helped highlight parts of compilers that contain
concurrency optimisations and support code.

We have focused on statement and branch coverage in
our use of coverage metrics so far. These metrics have clear
limitations in assessing the adequacy of a testing technique,
and other stronger metrics have been proposed, such as path
coverage [23]. However, automated tool support for stronger
notions of coverage is not readily available.

VI. RELATED WORK

A recent survey on metamorphic testing provides a thorough
overview of the field [2]. In this paper we have focused on
methods to help gain inspiration for new MRs, which then
need to be manually implemented in the relevant metamorphic
testing tool. We discuss related work on deriving MRs, and—
since C4 and spirv-fuzz are both compiler testing tools—on
metamorphic compiler testing.
Other metamorphic relation generation techniques: Exist-
ing MRs can be used as a building block to generate more

5https://groups.google.com/g/isl-development/c/BjxxUFI410c

complex MRs. One such instance is the notion of composing
metamorphic relations [24], where two compatible MRs can
be composed together, to form a new MR, encompassing
the strengths of both original MRs. Another approach is
using abstract knowledge to translate MRs between domains,
via metamorphic relation patterns [25]. Methods for MR
generation based on search algorithms [26], [27], machine
learning [28] and symbolic execution [29] have also been
investigated. These works are complementary to our contri-
butions: we present a cookbook of ideas one might try when
seeking inspiration for MRs, rather than a targeted approach
for actually generating concrete MRs in a particular setting.
Metamorphic compiler testing tools: A recent survey on
metamorphic testing includes a section on metamorphic com-
piler testing techniques [30]—C4 and spirv-fuzz are both
examples of metamorphic compiler testing tools. The idea of
metamorphic compiler testing was proposed in the context of
generating sets of programs that are equivalent by construc-
tion [31]. The equivalence modulo inputs (EMI) technique
involves starting with an original program and generating
equivalent programs by using coverage analysis to identify
statements that are unreachable with respect to a given input
and randomly removing them [12]; this can be viewed as a
form of metamorphic testing. The CLsmith tool for OpenCL
compiler testing takes an EMI-like approach, but introduces
code that is dead by construction, rather than identifying
existing dead code [32]. The GraphicsFuzz tool for testing of
OpenGL shader compilers also involves generating families
of equivalent programs by transforming an original program,
but uses semantics-preserving program transformations that
are based on static analysis, rather than taking the coverage-
directed approach of the EMI technique [33], [16], and has
been used as a basis for generating new conformance tests for
the Vulkan programming model [34].

VII. CONCLUSIONS AND FUTURE WORK

We have outlined the experiences that we, the developers
of three tools based on metamorphic testing principles, have
had with regards to the derivation of MRs. The sources
of inspiration broadly fall into three categories, related to
specifications, prior work, and metrics. Within each category
we have given specific examples from our experience that we
hope will be of interest to the metamorphic testing community,
and that may prove useful in guiding developers of future
metamorphic tools towards similar sources of inspiration.

While our tools took influence from parts of all three
strategies, the differences in our approaches, targets, and
contexts led to differences between the tools in the emphasis
and specifics of each. For example, the MRs used by MF++
to test the isl library benefited significantly from the advice
of the isl developers, and expert advice was also beneficial
in the design of spirv-fuzz transformations, but we have not
yet consulted the developers of concurrency-related compiler
features in relation to C4. Similarly, coverage analysis was
used to drive the development of MRs in C4 and MF++
but not yet in spirv-fuzz. A clear future direction for us as

https://groups.google.com/g/isl-development/c/BjxxUFI410c

the developers of these tools is to consider the sources of
inspiration that have not yet been leveraged for a particular
tool and see whether it proves useful as a source of new MRs.
Furthermore, our use of metrics to inspire MRs for C4 and
MF++ has so far been limited: for C4 we have only looked at
code coverage of the LLVM compiler (and not, for example,
GCC), while in MF++ we have only used coverage to assess
the thoroughness with which the isl library is tested.

While we have tried to categorise our sources of MR
inspiration, this is not a rigid taxonomy and is only based on
our experiences developing MF++, C4 and spirv-fuzz. We look
forward to engaging with others in the metamorphic testing
community to learn from their experiences, possibly with a
view to writing a broader and more rigorous experience report.

VIII. DATA AVAILABILITY

All three tools are hosted publicly on Github and are
available in their respective repositories: MF++ [4], C4 [5]
and spirv-fuzz [6]. As this paper is an experience report, there
is no associated data set.

ACKNOWLEDGEMENTS

This work was supported by IRIS EPSRC Programme Grant
(EP/R006865/1), EPSRC standard grant (EP/R011605/1),
the EPSRC HiPEDS Centre for Doctoral Training
(EP/L016796/1), and a grant from the Research Institute for
Verified Trustworthy Software Systems (VeTSS) funded by
the EPSRC.

REFERENCES

[1] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A new
approach for generating next test cases,” The Hong Kong University of
Science and Technology, Tech. Rep. HKUST-CS98-01, 1998.

[2] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Trans. Software
Eng., vol. 41, no. 5, pp. 507–525, 2015.

[4] A. Lascu, “MF++,” 2021. Available: https://github.com/0152la/SpecAST
[5] M. Windsor and J. Wickerson, “The C4 concurrent C fuzzer,” 2021.

Available: https://github.com/c4-project/c4f
[6] Khronos Group, “spirv-fuzz, part of SPIR-V Tools,” 2021. Available:

https://github.com/KhronosGroup/SPIRV-Tools/#fuzzer
[7] J. Kessenich, B. Ouriel, and R. Krisch, “SPIR-V specification, ver-

sion 1.5, revision 4, unified,” October 2020, https://www.khronos.org/
registry/spir-v/#spec.

[8] S. Verdoolaege, “isl: An integer set library for the polyhedral model,”
in Mathematical Software – ICMS 2010, K. Fukuda, J. v. d. Hoeven,
M. Joswig, and N. Takayama, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 299–302.

[9] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[10] B. Dutertre, “Yices 2.2,” in Computer Aided Verification - 26th
International Conference, CAV 2014. Proceedings, ser. Lecture Notes in
Computer Science, A. Biere and R. Bloem, Eds., vol. 8559. Springer,
2014, pp. 737–744.

[11] R. Brummayer, A. Biere, and F. Lonsing, “BTOR: Bit-Precise Modelling
of Word-Level Problems for Model Checking,” in Proceedings of the 1st
International Workshop on Bit-Precise Reasoning, BPR, 2008.

[12] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14.:
Association for Computing Machinery, 2014, p. 216–226.

[13] J. Alglave and L. Maranget, “The diy7 tool suite,” 2020. Available:
http://diy.inria.fr

[14] The LLVM Project, “LLVM language reference manual,” 2021, https:
//llvm.org/docs/LangRef.html.

[15] The Khronos Vulkan Working Group, “Vulkan 1.2 - a specification,”
2020, https://www.khronos.org/registry/vulkan/specs/1.2/pdf/vkspec.pdf.

[16] A. F. Donaldson, H. Evrard, A. Lascu, and P. Thomson, “Automated
testing of graphics shader compilers,” Proc. ACM Program. Lang.,
vol. 1, no. OOPSLA, pp. 93:1–93:29, 2017.

[17] A. Carzaniga, A. Goffi, A. Gorla, A. Mattavelli, and M. Pezzè, “Cross-
checking oracles from intrinsic software redundancy,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: Association for Computing Machinery,
2014, p. 931–942.

[18] cppreference.com, “Atomic operations library,” 2020, https://en.
cppreference.com/w/c/atomic.

[19] C. Tinelli, “SMTLIB2 ints theory declaration,” 2015. Available:
http://smtlib.cs.uiowa.edu/theories-Ints.shtml

[20] R. Morisset, P. Pawan, and F. Zappa Nardelli, “Compiler testing via
a theory of sound optimisations in the C11/C++11 memory model,”
in ACM Conf. on Programming Language Design and Implementation
(PLDI). ACM, 2013.

[21] J. Regehr and A. Groce, “The saturation effect in fuzzing,”, June 2020.
Available: https://blog.regehr.org/archives/1796

[22] S. Verdoolaege, “Integer set coalescing,” 2015. Available: https:
//lirias.kuleuven.be/retrieve/293569

[23] N. Gupta, A. P. Mathur, and M. L. Soffa, “Automated test data
generation using an iterative relaxation method,” in Proceedings of
the 6th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. SIGSOFT ’98/FSE-6. New York, NY,
USA: Association for Computing Machinery, 1998, p. 231–244.

[24] H. Liu, X. Liu, and T. Chen, “A new method for constructing metamor-
phic relations,” 08 2012, pp. 59–68.

[25] Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic relations
for enhancing system understanding and use,” IEEE Transactions on
Software Engineering, 2018.

[26] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei,
“Search-based inference of polynomial metamorphic relations,” in Pro-
ceedings of the 29th ACM/IEEE international conference on Automated
software engineering, 2014, pp. 701–712.

[27] A. Goffi, A. Gorla, A. Mattavelli, M. Pezzè, and P. Tonella, “Search-
based synthesis of equivalent method sequences,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014, pp. 366–376.

[28] U. Kanewala and J. M. Bieman, “Using machine learning techniques to
detect metamorphic relations for programs without test oracles,” in 2013
IEEE 24th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2013, pp. 1–10.

[29] G. Dong, T. Guo, and P. Zhang, “Security assurance with program
path analysis and metamorphic testing,” in 2013 IEEE 4th International
Conference on Software Engineering and Service Science. IEEE, 2013,
pp. 193–197.

[30] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and
L. Zhang, “A survey of compiler testing,” ACM Comput. Surv., vol. 53,
no. 1, Feb. 2020.

[31] Q. Tao, W. Wu, C. Zhao, and W. Shen, “An automatic testing approach
for compiler based on metamorphic testing technique,” in 2010 Asia
Pacific Software Engineering Conference. IEEE, 2010, pp. 270–279.

[32] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core
compiler fuzzing,” ACM SIGPLAN Notices, vol. 50, no. 6, pp. 65–76,
2015.

[33] A. F. Donaldson and A. Lascu, “Metamorphic testing for (graphics)
compilers,” in Proceedings of the 1st International Workshop on
Metamorphic Testing, MET@ICSE 2016, Austin, Texas, USA, May 16,
2016. ACM, 2016, pp. 44–47.

[34] A. F. Donaldson, H. Evrard, and P. Thomson, “Putting randomized
compiler testing into production (experience report),” in 34th European
Conference on Object-Oriented Programming, ECOOP 2020, ser.
LIPIcs, R. Hirschfeld and T. Pape, Eds., vol. 166. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, pp. 22:1–22:29.

https://github.com/0152la/SpecAST
https://github.com/c4-project/c4f
https://github.com/KhronosGroup/SPIRV-Tools/#fuzzer
https://www.khronos.org/registry/spir-v/#spec
https://www.khronos.org/registry/spir-v/#spec
http://diy.inria.fr
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://www.khronos.org/registry/vulkan/specs/1.2/pdf/vkspec.pdf
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
http://smtlib.cs.uiowa.edu/theories-Ints.shtml
https://blog.regehr.org/archives/1796
https://lirias.kuleuven.be/retrieve/293569
https://lirias.kuleuven.be/retrieve/293569

	Introduction
	Background
	MF++
	C4
	spirv-fuzz

	Inspiration from specifications
	Inspiration from prior work
	Inspiration from metrics
	Related work
	Conclusions and Future Work
	Data availability
	References

